Dopamine-based reward circuitry responsivity, genetics, and overeating.

نویسندگان

  • Eric Stice
  • Sonja Yokum
  • David Zald
  • Alain Dagher
چکیده

Data suggest that low levels of dopamine D2 receptors and attenuated responsivity of dopamine-target regions to food intake is associated with increased eating and elevated weight. There is also growing (although mixed) evidence that genotypes that appear to lead to reduced dopamine signaling (e.g., DRD2, DRD4, and DAT) and certain appetite-related hormones and peptides (e.g., ghrelin, orexin A, leptin) moderate the relation between dopamine signaling, overeating, and obesity. This chapter reviews findings from studies that have investigated the relation between dopamine functioning and food intake and how certain genotypes and appetite-related hormones and peptides affect this relation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weight gain is associated with reduced striatal response to palatable food.

Consistent with the theory that individuals with hypofunctioning reward circuitry overeat to compensate for a reward deficit, obese versus lean humans have fewer striatal D2 receptors and show less striatal response to palatable food intake. Low striatal response to food intake predicts future weight gain in those at genetic risk for reduced signaling of dopamine-based reward circuitry. Yet ani...

متن کامل

Youth at risk for obesity show greater activation of striatal and somatosensory regions to food.

Obese humans, compared with normal-weight humans, have less striatal D2 receptors and striatal response to food intake; weaker striatal response to food predicts weight gain for individuals at genetic risk for reduced dopamine (DA) signaling, consistent with the reward-deficit theory of obesity. Yet these may not be initial vulnerability factors, as overeating reduces D2 receptor density, D2 se...

متن کامل

Reward circuitry responsivity to food predicts future increases in body mass: Moderating effects of DRD2 and DRD4

OBJECTIVE To determine whether responsivity of reward circuitry to food predicts future increases in body mass and whether polymorphisms in DRD2 and DRD4 moderate these relations. DESIGN The functional magnetic resonance imaging (fMRI) paradigm investigated blood oxygen level dependent activation in response to imagined intake of palatable foods, unpalatable foods, and glasses of water shown ...

متن کامل

Variability in reward responsivity and obesity: evidence from brain imaging studies.

Advances in neuroimaging techniques have provided insight into the role of the brain in the regulation of food intake and weight. Growing evidence demonstrate that energy dense, palatable foods elicit similar responses in reward-related brain regions that mimic those of addictive substances. Currently, various models of obesity's relation to reward from food have been theorized. There is eviden...

متن کامل

Reward Region Responsivity Predicts Future Weight Gain and Moderating Effects of the TaqIA Allele.

UNLABELLED Because no large prospective study has investigated neural vulnerability factors that predict future weight gain, we tested whether neural response to receipt and anticipated receipt of palatable food and monetary reward predicted body fat gain over a 3-year follow-up in healthy-weight adolescent humans and whether the TaqIA polymorphism moderates these relations. A total of 153 adol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current topics in behavioral neurosciences

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011